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This paper deals with linear and non-linear hydrodynamic stability
of the two-dimensional Poiseuille flow. A new numerical approach
for the study of linear stability is presented. A numerical study of
the transition of the flow to chaos is also presented. Using tools
from dynamical system theory, we identify and characterize the
different solutions of the Navier-Stokes equations at different val-
ues of the Reynolds number. Numerical sclutions are presented
on the unstable branch of solutions resulting from the observed
subcritical Hopf bifurcation. © 1994 Academic Press, (nc.

1. INTRODUCTION

Simple flows are extremely useful from a numerical stand-
point. They play an important role, both as test cases during
the development of new algorithms and as debugging tools in
the construction of new codes or the updating of old ones.
Among these simple flows, the most important might very well
be the two-dimensional stationary laminar flow between parallel
walls known as the Poiseuille flow. The geometry and boundary
conditions are extremely simple. A parabolic velocity profile
and constant pressure gradient solution of the analytic problem
exist, for all values of the Reynolds number Re. However
simple it may be, that flow has many important properties that
can be useful for the numericist and which raise a number of
intriguing theoretical questions, in particular, from the stability
peint of view. Here again, the simplicity of the geometry allows
for an almost complete analysis without the use of powerful
computers. Nevertheless, there is still much more to say about
this flow and this is the objective of this paper. Qur intention
is to make a complete investigation of this problem from both
the linear and non-linear stability points of view. We will also
study the transition from laminar io turbulent (chaotic) flow.

We hope to demonstrate that sophisticated numerical meth-
odologies are required to tackle the problem in all its subtleties.
Until recently, this kind of analyses has been performed with
the help of spectral methods; once again, the simplicity of
the geometry allowed for this choice. One of our secondary
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objectives is to show that such analyses can be performed
accurately by finite element methods.

In fluid mechanics, the role of hydrodynamic stability, which
focuses on the evolution with time of small disturbances of
permanent flow, is of paramount importance due to the wide
range of problems arising from engineering applications. The
term stable can be defined precisely in terms of those distur-
bances: if they ultimately decay to zero, the flow is said to be
stable, whereas if any of them remains permanently different
from zero, it is unstable. The study of their evolution can
follow at least two roads, depending on whether the governing
Navier—Stokes equations have been hinearized or not: we can
conduct a linear or a non-linear stability analysis. It is well
known from a mathematical standpoint that steady-state solu-
tions to the Navier—Stokes equations exist for large values of
the Reynolds number Re. It is also known that for small Re
the stationary solution is unique and it is of great interest, not
only in the Poiseuille case for that matter, to determine for
which value of Re that basic flow loses its stability. We will
denote that critical value by Re,..

For Reynolds numbers higher than Re,,, a number of scenar-
ios are possible, leading to the study of transition. Surprisingly
enough, the Poiseuille flow exhibits a rather complex transition
at high Reynolds numbers. Another objective of this paper is
to illustrate the scenario of the transition from the laminar to
the turbulent state and to propose a characterization of that tran-
sition.

An outline of the paper is as follows. In Section 2, the
problem is described; linear and non-linear stability are defined
and discussed. Classical simplifications leading to the famous
Orr—Sommerfeld differential equation are recalled. A one-
dimensional analysis is performed in Section 3. The Orr—
Sommerfeld equation is solved by a Ricatti method and critical
Reynolds numbers are determined for different wavelengths.
The same analysis is carried out in two dimensions in Section
4. A finite element method 1s developed for the solution of the
eigenvalue problem that gives the critical Reynolds numbers,
It will be clear from the development, that the latter methodol-
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ogy can be applied to more complex flows where one-dimen-
sional analysis is not possible. Section 5 is devoted to the non-
linear stability analysis and to the study of the transition from
laminar o chaotic low. A brief conclusion follows.

2, PESCRIPTION OF THE PROBLEM

This paper focuses on the study of the flow of an incompress-
ible fluid confined between parallel rigid walls located at
x; = =1 (see Fig. 1). This problem is often referred to as the
Poiseuille flow. Referring again to Fig. 1, a no-slip condition
is imposed on the parallel walls I'y and I';, while periodicity
is required on the artificial boundaries I'; and [y, 1.e.,

“lr‘,:llln- (1)

We also impose a flowrate @ at the inlet of the domain de-
fined by

Q=J|‘u-nds, (2)
which leads us to define the Reynolds number as

Re == =; 3

= 1

3
4

here v is the kinematic viscosity. In the paper, the value of O
will always be 0 or 3, depending on the particular form of the
problem. This leads us to solve the Navier-Stokes equations
which can be written in that particular case:

ou l
———V- +{u-Viu+ vp=
5 Re (Zy(up) +(u-Viu+vp=40
V-u=0
u(x, 0) = uy(x)
Pbl = 4)
U‘r,u[‘I:O
Q=Lu-nds
Lull'_‘zull‘:s
where
1 {ou; du;
= =L B
viu); 2(6}@ BL) (5}

Asusual X = (x, xy) is the position vector of an arbitrary point
in the flow domain, ¢ is the time, u is the velocity, and p is the
pressure. It is easy to verify that a steady state solution exists
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for all values of Re which is given by

w-(,") o
Ulx} = . P = o (6)
0 Re
We are interested in the stability of this solution as the Reynolds
number increases. Physically this can be interpreted as whether
or not the steady-state solution can be observed. The basic idea
is that a solution can be observed only if it is not sensitive to
small perturbations. We thus suppose that at some initial mo-
ment, a small perturbation (v, ¢} is superposed to the laminar
solution (6). This induces a perturbation (v, g) for all time
t > 0. Stability deals with the evolution of (v, g) with time.
[t is thus necessary to obtain a set of equations describing
this evolution.

Replacing (u, p) by (U + v, P + g) in the Navier—Stokes
system (Ph1) and using the fact that (ﬁ, 17) is a steady-state
solution, we obtain the initial-value problem:
v_lyg. VWO+(@T-V
5 Re ¥ @y Hive W+ (U- Vv

+{v - Viv +Vg=10

V-v=20
Pp2 =< ¥(x.0) = uy(x) — U= vy(x) (7)
V|FLUI‘: =0
j v-nds=190
l"‘i

L Vl]‘] = V!]‘J.

Problem b2 represents the mathematical problem of hydro-
dynamic stability.

2.1. Linear Stability

Linear stability deals only with disturbances of a particular
type, the form of which is suggested by experiments. In this
section, we follow the approach of Georgescu [14] to get to
the Orr—Sommerfeld equation. Neglecting the nonlinear term
in (7) the mathematical problem of linear hydrodynamic stabil-
ity becomes

av 1 =
AR O EEA
+(U-V)v+Vg=0
V-v=0
Pbh3 =12 v(x,0) = v(x) (8)
V|r,u1‘: =0
J v-nds =0
r.\
Vl['_i = Vi]‘i.
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FIG. 1.

It is assumed [1] that any perturbation v can be obtained by
the superposition of some perturbations of the form

v(X) = vy{x)e”, )

called normal modes. In the case of unbounded domains in one
direction the perturbations are assumed 10 be pertodic along
this direction. They are then of the form

V() = fylretn i = el E 10)
and called transversal Tollmien—Schlichting waves. Here o is
the wave number in the x,-direction (&« = 2a/L), L is the
wavelength (length of the domain}, and &, v, and g are solutions
of the eigenvalue problem

[ ovo + (U Vv, + (v - V)ij
1
- E Vo (2y(v)) + Vg =0
V t Yy = 0
Pha =< (11}
Vn|1‘1u|'z =0
jr vo-nds =0
L VOJI'] = an:;-

which is obtained from %53 through the change of unknown
(9). Let us set

—a .
—=c=c,+ i, (12)

i
so that

v(x) = Py(xp e’ (13)

Geometry of the probiem.

For any eigenvalue and eigenfunction (o, vy), the corresponding
wave (13) will decay to zero if and only if

¢; < 0. (14)
Thus, we have linear stability if (14) is valid for all the eigenval-
ues and instability if it is violated by any of them. The case

where the first of the ¢; becomes zero is called neutral.
Since v(x, t) is solenoidal, a stream function

'f/(-’-’h X, 1= d)(xg)e‘“"‘l“‘”' “5)
can be introduced so that
o
axg
1) = 16
VX, 1) o (16)
6/\'|
Comparing with (13), we get
0ula) ( &'(x2) ) an
VYplX.) = f
T \ i)

where the ' stands for the derivative with respect to x,. Setting
g(x, 1) = plx;)en™ the eigenvalue problem % #4 becomes

—iadpU| — iacd’ + iU, ad' = —iap + é(‘a?(ﬁ' + ",
| (18)
—-alcp+ U, p=-p' + Re (ic*d — ixd”).

Upon elimination of the pressure, we obtain the well-known
Osr—-Sommerfeld equation

o’¢) — oUT
1
fox Re

(U, = eX¢" —
(19

(¢" = 207" + '),
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where U/, = | — x} and the boundary conditions are

A1) ='(—1) = 1) = ¢'"(]) =0 (20}
Therefore, the linear stability analysis of the sensitivity of the
Poiseuille flow to perturbations of the form of transversal
Tollmien-Schlichting waves is equivalent to the eigenvalue
problem (19), (20}, where ¢ is the eigenvalue and ¢ is the eigen-
function.

2.2, Non-linear Stability

The non-linear stability analysis is based on the direct solu-
tion of P41 with an initial condition of the form
u(x, 0) = U + vo(x), 21

where U is again the basic flow and v,(x) is a perturbation.
The reader will easily convince himself that the resulting prob-
lem can also be obtained from b2 by setting u = U + v,

This leads to a system that differs from %53 only by the inertial
term u - V.

3. LINEAR STABILITY: ONE-DIMENSIONAL CASE

In the preceding section, we have shown that the linear
stability analysis of the Poiseuille flow, with respect to an
infinitesimal two-dimensional disturbance, is equivalent to the
Orr—Sommerfeld eigenvalue problem

(U, = o)d" — &) — dUYT
1
" jaRe

-1 =@ (=)= (1) =$'(1)=0.

(" = 2a'd" + a'ep)

(22)
(23)

The first attempt to obtain a numerical solution of (22), (23)
is due to Thomas [3]. He successfully used a finite differences
scheme to tackle the numerical difficulty arising from the sharp
boundary layer near the channel walls. Orszag [7] solved this
problem by using an expansion in Chebyshev polynomials, and
obtained Re,, = 5772.22 for o = 1.020545. This is the smallest
Reynolds number for which linear instability occurs. By varying
the value of «, one can obtain the classical linear stability curve
(see [1].

We have also solved the Orr—Sommerfeld equation in order
to determine critical Reynolds numbers and the corresponding
eigenfunctions ¢ which will be useful for the construction of
initial solutions for the two-dimensional case of the following
section. For this purpose, we have chosen the Riccati method
which has been introduced first by Scott [2] and subsequently
applied to the Orr—Sommerfeld equation by Davey [6], Sloan
[4], and Sloan and Wilks [5].

The basic idea is very simple and consists in first transforming
(22} into a system of four ordinary differential equations with
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initial conditions. Indeed, upon rewriting (22} in the form

(U, — cH" — a*d) — dUY
1
" jxRe

(24)

((¢" —a’ed) — a’(¢" — a’P))

we are led to introduce the new variables

( . ) ( ' )
b= , ¥ = R (25)
¢m _ a_2¢’! fﬁ" . a’kqﬁ

and to rewrite (24) in the form

&' =RBY
V=@,

where 9 is the 2 X 2 matrix

o 1
o
—iaRelU}! o +iaRel/, — o)
According to [ 1), the symmetric modes are the most destabi-

lizing. Thus, assuming ¢ to be even, we can solve (26) on the
interval [0, 1] with the boundary conditions

$'(0) = ¢"(0) = 0, &(1) = ¢'(1) = 0. (27)

Now, let 9 be a 2 %X 2 mairix of the form
Pl ra(xa)
R = .
ri(x2)  Fa(x:)
We will say that & is a Riccati matrix corresponding to a

solution (¢, ¢} of the eigenvalue problem (26)-—(27} (or equiva-
lently (22)—(23)) if ¢ satisfies the relation

$ =R (28)
Since
(- es0) {0
®(0) = = ,
$"(0) — o’ (0) 0
( () )
O = ) :
$"(0) — e’ (0),
the boundary condition as x» = 0 will be satisfied if
R =0, (29)
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or, equivalently,
r{0) = ry(0)y = ry0) = ry0) =0. (30
Similarly, differentiating (28) on each side, it is easily seen

that (¢, &) is a solution of (26), if and only if % satisfies a
system of non-linear differential equations of the form
M+ =B, (3D

which can be written as the following system of first-order
ordinary differential equations:

| 2 T
Fy = Q" — F] — i
Y
rn=1=—rr—nn

(32)

r1=2aRe —rir,— ryn

ol + i Re(d — ) — rary — Fi.

Looking more closely at the second and third equations, we
note that they differ only by the multiplicative factor 2io Re.
Since both r, and r; verify the same inmitial condition. we con-
clude by a unicity argument that 3 = 2ia Re r,. The system
reduces then to three equations.

The last thing that we have to deal with is the boundary
condition at x; = | in (27). Setting x, = 1 in (28) shows that
this condition is equivalent to

()=o)
=R
#"(1) #'(1)

which, in turn, is equivalent to

ri(ly = 0. (33

In order to determine ¢ for given values of « and Re, one
has to solve the system (32) with initial conditions (30} and
under the constraint (33). This is achieved by using a shooting
method. A fourth-order Runge—Kutta method is used to solve
the systems of ordinary differential equations. A secant method
is then used to vary the value of ¢ until the constraint (33)
is satisfied.

For example, for o« =
found that

1.020545 and Re = 5772.22 we

¢ = 0.26399856 + i 0.25199 x 10~

which is in good agreement with the result given by Orszag
[7]. Once the value of ¢ is known, the eigenfunction ¢ can be
determined from (28), which, upon elimination of @, becomes

¥ =, (34)
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As ¥ is not known at x, = 0 but

()
()= )
¢"(1)

a reverse integration for the solution of (34) is required. More-
over, since the solution to (34) is unique up to a multiplicative
constant, we may suppose that ¢”(1) = 1 to get a suitable
initial condition,

It is worth noting that the values of %t which are needed to
solve (34) were stored during the solutien of (32), We present
in Figs. 2-3, the real and complex parts of the eigenfunction
¢ and its derivative ¢' corresponding to « = 1.020545 and
Re = 53772.22.

4. LINEAR STABILITY: TWO-DIMENSIONAL CASE

In this section we carty out two-dimensional numerical calcu-
lations for the eigenvalue problem ®b4 in which U is given
by (6) and the geometry is that of Fig. 1. The results will be
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compared with those of the previous section. The methodology
is however general and can be applied to other problems, where
one-dimensional analysis is not possible (see {17] for more de-
tails).

4.1. Our Approach

As explained in Section 2.1, linear instability occurs when
one of the ¢;’s becomes positive. Since o0 = —iac, instability
will correspond to an eigenvalue o crossing the imaginary axis
from right to left. When all eigenvalues have negative real
part, the least stable mode corresponds to the o nearest the
imaginary axis.

A computation of all the eigenvalues would be prohibitive.
From the above discussion, it seems plausible (but not certain)
that the least stable mode can be located by looking only at
the eigenvalues with smallest moduli. This can be easily done,
with the help of the simultaneous inverse iteration method
described in [22]. This method allows for the computation of
the n; smallest eigenvalues in modulus of a matrix # of dimen-
sion N with N > n,. The choice of »r, is not an easy task
since no indication on the position of the critical eigenvalues
is available. In the following computations, n, was set arbitrarily
to 100 (see [13] for a complete description of the method). The
algorithm can be summarized as follows:

1. Construction of a random set of m initial trial vectors
u; stored as the columns of the N X m matrix 94U,

2. Orthonormalisation of the columns of % by the modified
Gram—Schmidt method.

3. Resolution of the m linear systems
#-v, = u,.

The m resulting vectors v; are stored as the columns of the
N X m matrix V.

4, Reduction to m X m of the dimension of the problem

B=U-V,
5. Solution of the eigenproblem for V" by the QR method
B-P=P A
6. Inversion and sorting of the eigenvalues %.
7. Computation of the new matrix U,

U=V -9

8. Convergence test. If it fails move back to 2.

In the above algorithm, the number of trial vectors m was
set to #, + & to improve the convergence speed (see [30]).

To apply this algorithm we must first get some discrete
version of P44 and then introduce the matrix &f. To be more
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explicit, let us introduce the following definitions:

M= {v S (H'()MV v =0, jr v-n=0,

= O}’
I rur

Fl M

X = Lijn.

v =v| ,andv

Is

Clearly M is a subspace of the Sobolev space (/'({2))". Defining
A as the N X N matrix related to the finite element discretization
of the operator

TVt @ T - V- ). (35)

defined on M, the problem %54 has the variational form

Findv,&E M

PbT = { {36)

(Avy,v)=(—0ovg.¥v) ¥YvEM.

where (-, -) designate the scalar product in LX). Problem
% b4 is an eigenvalue problem on the subspace M of divergence-
free periodic functions satisfying homogeneous boundary con-
ditions and for which the flowrate is 0 on I'y. Step 3 of the
algorithm requires the solution of a sequence of problems of
the form

Foreachi=1,2,3,..,m, findv,eM
P8 = (37)

(dv,v)=(u;,v) YvEM,
The problems @58 are constrained problems with solutions in
M and, following Fortin [8, 9], they can be solved with the
help of the following atgorithm:

Fori= 1,23, .., m,
step 0: v{, p° A" given arbitrarily

step 1: For & = 0, solve (v}, p*, A* being known)

_2“ &y 0- k
/. {Re YOV y(w) + (U - V)dviw
+ {6Vt - V)Uw + r,V « SviV - w} ix
+ry (J_] vt - ds)(J’l_ w- nds) =
[ Az vipw + @ Dvtw

i Re‘y i 7 i

+ (v - VUw —uw — p'v - w} dx

Y U[ w-n ds)
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Step 2: Update
vitl= v — Sl

pl=pf— Vv
A=A — (Jl vi-n ds).

This algorithm is based on a generalization of the Uzawa
algorithm for the solution of saddle-point problems [12]. The
constraints

V-v,=0, L v,-nds =0,

are both imposed through the Lagrange multipliers p and A,
respectively. Moreover, the constraints are strongly penalized,
with penalization parameters r, and r, of the order of 107. As
mentioned in {9], the velocities and pressure cannot be chosen
independently. The Q. — P, (Fig. 4} element was used for the
discretization of the velocity components and pressure since it
1s well known that this is one of the best elements for two-
dimensional simulations. In fact this element is second order
in space (O(h*) and satisfics the inf-sup condition of Brezzi
[15] by passing the test of Fortin [11].

The choice of the mesh is another important issue. We have
used four different meshes depicted in Figs. 5-8. On each of
these meshes, the eigenvatues were computed for o = 1.020545
and Re = 5772.22. The following values (Table I) were ob-
tained for the smallest eigenvalue crossing the imaginary axis,

The value of ¢ on mesh 4 agrees to six digits for the one-
dimensional computation with the Orr—Sommerfeld equation.
This mesh will be used in all subsequent computations. If one
determines critical Reynolds numbers corresponding to various
e by finding the first value of Re for which one (or more)
eigenvalues crosses the imaginary axis, one gets a curve as in
Fig. 9 which is called a neutral stability curve. One can also
fix « and study the variation of the eigenvalues with Re. This
is iflustrated in Figs. 10-13, which show that, as Re increases,
a pair of conjugate cigenvalues crosses the imaginary axis. For
« = 1.020545 this occurs at Re = 5772.22.

4.2, Ghaddar's Approach

Another approach to the study of linear stability was de-
scribed by Ghaddar, Korczak, Mikic, and Patera [16]. Rather

FIG. 4. Element ¢, — P,.

FIG. 5. Mesh 1.
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FIG. 6. Mesh 2.

FIG. 7.

Mesh 3.

FIG. 8, Mesh 4.
TABLE 1
Mesh T ¢ = —ofic
1 0.21689 % (07! = 031649 031011861 = 0.2125237 X 107!
2 (.90832 X 107% = 0.27084i  0.26538761 = 0.8900342; X 107}
3 —0.33565 X 107 = 0.26946{ 0.26403539 + 0.3288929; x (0™
4 —0.73643 X 107° = 0.26944; 0.2640158] = 0.7216046; x 107°
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than looking at perturbations of the specific type (10), they
c8 . T " r r propose to solve %53 directly with the initial condition
06 i ~ .
‘2 vix, ) = He(Vo(xs)e™); (38)
XN 3 . © - h

i.e., the real part of the transversal Tollmien-Schlichting wave

.ooer ° 1 at t = 0. ¥,(x,} is the least stable mode obtained from the
: resotution of the Orr—Sommerfeld equation and by the relation
] ] B . . .
+ {17). Using the numerical solution of the velocity ut a represen-
E . . - - -
= sal ] tative point in the domain, they read off the growth rate ¢ and
¢ <0, 4 the frequency {. We followed their approach and resolved, in
o ° . 1 turn, the same problem, using our finite element code. For
sl K ] the time discretization, we used a fully implicit Gear scheme
defined by
08 . L L L L
0.8 05 0.4 Haﬂian -0.2 =21 g au 3 3u"+] o 4“” + u”_‘ (39)
FIG. 10, Eigenvalues for Re = 4000 and o = 1020545, or 24t
At Re = 525 and for o« = 0.94244778, we obtained at the
point (5.312743, 0.96992737) the signal depicted in Fig. 14.
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By the means of a non-linear regression, we obtained & =
—0.0699205 as a growth rate and T = 18.20 as the period. The
frequency is then £ = (.054945, which is in good agreement
with the results of Ghaddar er af. [16] and Orszag [7]. It is
worth noting that the shape of the streamlinesatt = Oandt =T
is virtually preserved as shown in Figs. 15-16, an indication of
the accuracy of our numerical scheme. To verify the above
results, we have computed the eigenvalues using the approach

of Section 4.1. We have obtained
o= —0.06996 = ; 0.34541,

for the least stabie mode. A simple calculation gives a fre-
quency of

(1 = 0.0549737,

which agrees with the result of Ghaddar. The encircled dots of
Fig. 17 represent this pair of eigenvalues.

5. TRANSITION

The objective of this section 1s to understand how, and under
what circumstances, transition from steady to chaotic flow oc-
curs, in the case of Poiseuille flow. Such transition cannot be
predicted by linear theory. Consequently, the full two-dimen-
sional Navier—Stokes equations will be solved starting at Reyn-
olds numbers where linear stability is lost. For & = 1.020345
this occurs at Re = 5772.22. The Reynoids number is then
slowly increased and the different solutions are analysed by
means of Fourier analysis and phase portraits. This allows the
identification of the bifurcations occurring in the flow problem.
One goal of the numerical experiments carried out in this section
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is to establish, if possible, a link with fundamental theoreti-
cal works.

3.1. Numerical Method

The study of the transition and of the non-linear stability of
the steady Alow can be done by examination of the behavior of
the solution of the problem % | with the particular initial con-
dition

ux, 0) = U + v(x). (40)
The initial perturbation v, is given here again by (38). Problem

b1 is then solved by vsing a slight modification of the algo-
rithm of Section 4, since in this case the flowrate Q is different

from 0. A fully implicit Gear scheme (39) was used for the

discretization of the time derivative, This difference eguation
is second-order accurate ((Ar?) and is known to be A stable.

5.2. Numerical Results

The first numerical results presented in this section were
computed for o = 1.020545 using mesh 4 of Fig. 8 for which
the computation of the eigenvalues of the problem P #6 was

FORTIN ET AL.

the most accurate. Other values of « will be considered later.

Since snupshots of streamlines and of the velocity field are
not sufficient to get a complete picture of the solutions at
different Reynolds numbers, we introduce two tools from dy-
namical systems theory: phase portraits and Fourier analysis.
For more details about the construction of phase portraits and
the Fourier analysis, the reader is referred to [10]. These tools
allow us to characterize and classify solutions and also to local-
ize the values of the Reynolds numbers where bifurcations
occur.

The following strategy was used. At each time step the values
of the velocity field at three points in the domain represented
in Fig. 1 were stored. The time step Ar was set to 0.05 during
all computations, and at least 100,000 time-steps were required
1o obtain a solution for each Reynolds number. Phase portraits
were then constructed and a Fourier analysis was performed
using the resulting signal.

At low Reynolds numbers, the steady flow is stable and the
parabolic profile (6) is recovered as predicted by the linear
theory and as can be seen in Fig. 18. The oscillations introduced
by the perturbation decays until the velocity profile becomes
parabolic again, At Re = 5772.22, according to the results of
Sections 3 and 4, a pair of conjugate eigenvalues crosses the
imaginary axis leading the flow to become unstable. This is an
indication of a Hopf bifurcation. Tt is known [24] that this
bifurcation is subcritical. Conseguently, the branch of periodic
solutions bifurcates in the direction of decreasing Reynolds
numbers and the bifurcating solutions are unstable. Figure 19
gives the expected bifurcation diagram. In order to get on the
upper branch at point A, we solved the problem at Re = 5772.22
and we obtained a periodic flow with a non-vanishing amplitude
that depends on Re and on the wave number «.. The fundamental
frequency f) is essentially the same as the one found in the
previous section. In Fig. 20 we can see the meandering of the
central flow. The temporal evolution of the velocity, the phase
diagram, and the Fourier analysis are presented respectively in
Figs. 21, 22, and 23. As expected, the velocity at a given point
in the domain is perfectly periodic. This is confirmed by the
Fourier analysis showing a fundamental frequency and a few
harmonics and by the closed curve of the phase portrait.

re=4350; |10,V Wi

FIG. 18. Laminar flow velocity.
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FIG. 19, Sketch of the bifurcation diagram.

As the Reynolds number is increased, this time-periedic solu-
tion remains stable up to Re = 6000, where a second incommen-
surate frequency f, appears. The velocity field is presented in
Fig. 24 and it is easily seen in Fig. 25 that the signal is quasi-
periodic. This is confirmed by the phase portraits that are now
projections in the plane of a two-dimensional torus as shown
in Fig. 26. Figure 27 is the Fourier analysis of the signal showing
the presence of a second frequency of very small amplitude.

For Re = 8000 and Re = 10,000 the flow is still quasi-
periodic, although the meandering of the central flow is more
pronounced. At the bends in the flow, cat’s-eye patterns can
be observed (see Fig. 28) as described in |28, 20]. The second
trequency has increased in amplitude as can be seen in Fig. 29.

At Re = 11,000, the time evolution of the oscillations be-
comes weakly chaotic. This chaotic behaviour increases with
the Reynolds number as shown in Figs. 30-32 for Re = 12,900.
The velocity signal has no regularity at all (Fig. 31) and the
Fourier analysis presented in Fig. 33 shows the emergence of
a broadband component, Finally the phase portrait is no longer
a torus and presents very irregular patterns (see Fig. 32).

During our numerical experiments, we did not detect the
presence of frequency locking as in Jimenez [21]. who did his
calculations with o = 1.0. Having a two-parameter {« and Re)
dependent dynamical system it is known (see, e.g., Gucken-
heimer and Holmes, Chap. 6 in [29]) that frequency locking is
likely to occur for an open set in the («~Re) space parameters,
If one knows how to control one parameter while the other
varies monotonously, the frequency locking may be observed

—~
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on a relatively large range of the second parameter. If only one
parameter varies, frequency locking may occur on a very small
range of this parameter. This is most likely what happened
since o was fixed at 1.020545. We did not manage to increase
the Reynolds number very slowly in order to get frequency
locking, due to a prohibitive computational cost. Consequently,
we cannot confirm nor refute the results of Jimenez [21] con-
cerning the presence of frequency locking.

In order to determine more precisely the nature of the bifurca-
tion occurring at Re = 5772.22 and to confirm the bifurcation
diagram in Fig. 19, it seemed interesting o make some more
computations starting at Re = 6000 and decreasing Re gradu-
ally. In each case the initial condition was taken as the con-
verged solution obtained at the previous Reynolds number.

We were able to obtain periodic solutions for Reynolds num-
bers as low as 4350, At Re = 4350 with « always set at
1.020545 the steady flow reappears again. This result agrees
with those of Zahn [23]. In fact a close look ai the so-called
metastable regions of {23] shows the accuracy of our result.

To complete and validate our results, computations were
performed for two other values of a. At @ = 1.3126, the low-
est Reynolds for which we could find a periodic solution was
2645 and at & = 1.310, we found Re = 2680 again in good

re=5772.22; |1U,v,¥|}

I i
0 0.1 0.2 0.3

F1G. 20.

Velocity field for Re = 5772.22.



4660 FORTIN ET AL.

1.1 T T T T 11 T T T T T T T T T
108 |
1.05 b ]
1
1 4
£ g
5 g s
= T
-
0.95 F 4
09
09+ B
o8s -
085 L . . . L a8 M . : s . A . L
0.85 09 0.95 y 1 1.05 11 4500 4550 4600 4850 4700 4750 4800 4850 4900 4950
(1] t
FIG. 22. Phase diagram for Re = 577222 (T' = 0.25). FIG. 25. Time evolution for Re = 6000.
0.04 - . T T -— r 1044 v : v T T v T 1
0.005 | i 1042 |
ogs b 4 e S
o025 | ] R
CRAREARR
N ‘\‘:\\\‘ N
g ~ 1036+ ) IR
£ omf 1 z SRR
E >
< 1034 b
015 | E
1092 |
oot | ]
103
0005 }‘ ] 1.028 |
[} 0.1 02 03 0.4 05 06 07 1026  1.028 103 1032 1034 1036 1038 104 1042
Frequency Vit)
FIG. 23, Fourier analysis for Re = 5772.22. FIG. 26. Phase diagram for Re = 6000 (T = 0.25).

Te=6000; |1u,V,Wi

£ S —_— H — i fe——
4 0.1 0.2 0.3 c.4 e.5 0.6 0.7 0.8 0.9 1

FIG. 24.  Velocity field for Re = 6000.



2D POISEUILLE FLOW

0.08 T T T T T T
o0os | ~‘
0.04 | b
o
2
£ oear E
3
<
oo ]
0.01 R
o S N X , :
0 0.1 02 4 0.5 04 07

0.3 0.
Frequency

FIG. 27. Fourier analysis for Re = 6000.

agreement with the results of Zahn [23] and also with those of
Joseph {27].

Figure 34 shows the decay of the amplitude with the Reynolds
number for a = 1.020545. Figure 35 illustrates how the signal
is vanishing for Re = 4350. Figure 36 gives a sketch of the
amplitude versus Re for & = 1.3126. This value of « gives the
smallest Reynolds number for which a periodic solution can
be observed.

From these results we deduce that the turming point of the
bifurcation diagram occurs around Re = 2645 and the amplitude
of the unstable periodic solutions on the lower branch are very
small. In particular, we recover the well-known observations
that the domain of attraction of the laminar solution in the
subcritical range (2645 = Re = 5772.22, according to our
computations) is very small. Consequently, in the subcritical
range of Reynolds numbers, any slight perturbation of the Poise-
ville flow, apart from a very small one, will lead the flow to
escape the domain of attraction of the Poiseuille flow and snaps
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FIG. 29, Fourier analysis for Re = 10.000.

through the unstable bifurcating branch to a flow with a large
amplitude, not necessarily a periodic tlow belonging to the
upper branch. This is the so-called snap through instability
mechanism as explained in [24].

6. CONCLUSION

We have developed a practical and accurate numerical
method for the study of the linear hydrodynamic stability of
the two-dimensional Poiseuille flow. This method gives satis-
factory results when compared to other methods. The most
important featurc of this method is that it can be applied to more
general problems especially those where the steady solution is
not known exactly as is the case with the Poiseuille flow.

We have presented the phenomenology of transition and non-
linear stability. Our results seem to confirm a few theoretical
results. They are also in good agreement with experimental ob-
servations.
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